The GEONAMICA® software environment for dynamic spatial modelling

Jelle Hurkens & Bernhard Hahn
Research Institute for Knowledge Systems

P.O. Box 463
6200 AL Maastricht
The Netherlands
www.riks.nl
It is not completely new!
Common characteristics

- Spatial Decision Support Systems
- Integrated model
- High model complexity
- Models that can evolve over time
- Systems that require a powerful engine
- Interactive systems
 - Computation time
 - Usability
 - Development
What is GEONAMICA®?

- **Object oriented application framework**¹ to build integrated spatial decision support systems
 - Generic components and architecture for SDSSs
 - Provides skeleton (software) application

- **METRONAMICA**: template SDSS
 - No programming required to set up an application

- **MedAction, Xplorah, LUMOCAP, …**
 - ISDSSs built with GEONAMICA®

Benefits of a framework

- **Reusability**
 - Design reuse
 - Implementation reuse

- **Modularity**
 - Decomposition of system in prescribed way

- **Extensibility**
 - Functionality can be extended easily

- **Inversion of control**
 - Framework decides when things happen
What comprises GEONAMICA®?

- Data structures & common procedures for map data, time series data and cross-sectional data
- Modelling framework and simulation engine
- Components to build graphical user interfaces (GUI)
Modelling framework

- Builds on Discrete Event System Specification (DEVS) formalism
- Decomposition into model blocks:
 - Variables
 - Computation routines
 - Output ports
 - Input ports
 - Interface ports

- Hierarchical model specified at run-time
Model connection

Model block A

Variable A1

Input ports

Model block B

Variable B1

Output ports
Simulation engine

- Variable stores value for one moment in time
- Computation routine calculates next moment in time

- Adaptation of DEVS implementation
 - Different types of variables
 - Order of computing model blocks
Variable types

- Derive precedence relations for calculation of model blocks automatically

1. Is the value of the variable dependent on the value of another variable?
 - yes, endogenous
 - no, exogenous

2. Is the variable value dependent on the lagged value of another variable or its own lagged value?
 - yes
 - no

3. Can the value of the parameter change over time – that is, does it follow a time line?
 - yes
 - no

- Accumulating variable
- Transitory variable
- Dynamic parameter
- Static parameter
GEONAMICA® overview

- Application
 - User interface
 - Model controller
 - Model block A
 - Variable A1
 - Model block B
 - Variable A2
 - Model block C
Summary - features

- Modularity
 - Decomposition into model blocks
- Highly automated
 - Derivation of computation order
 - Common procedures for model blocks
- Can build efficient system
- Tailor-made user interface
Current development

- Compute model blocks in parallel
- Improve support for map data
- Platform independency
 - Web-based applications

- Longer term:
 - Allow GEONAMICA® to incorporate models that comply with compatible standard
 - Create visual modelling environment
Thank you!

Questions?
A simple use case

- Model block A:
 - $X_t = f(Y_{t-1}, Z_{t-1})$
 - $Y_t = g(Z_t)$

- Model block B:
 - $Z_t = h(X_t)$

⇒ Calculate X before Y and Z
 Calculate Z before Y

⇒ Computation order: X, Z, Y

⚠️ X and Y must be calculated ‘simultaneously’
Computation order

- 2 kinds of relations
 - Lagged
 - Non-lagged
- 6 kinds of connections

<table>
<thead>
<tr>
<th>Relation</th>
<th>X_{t-1}</th>
<th>X_t</th>
<th>Y_t</th>
<th>Meaning</th>
<th>Brief</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_t = f(X_t)$</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>X must be calculated before Y is calculated.</td>
<td>$X < Y$</td>
</tr>
<tr>
<td>$Y_t = f(X_{t-1})$</td>
<td>-</td>
<td>T</td>
<td>A</td>
<td>This is impossible, since all accumulating variables must be calculated before all transitory variables.</td>
<td>-</td>
</tr>
<tr>
<td>$Y_t = f(X_t)$</td>
<td>-</td>
<td>A</td>
<td>T</td>
<td>This is ok; all accumulating variables are calculated before all transitory variables.</td>
<td>ok</td>
</tr>
<tr>
<td>$Y_t = f(X_{t-1})$</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>X must be calculated before Y is calculated.</td>
<td>$X < Y$</td>
</tr>
<tr>
<td>$Y_t = f(X_{t-1}, Y_{t-1})$</td>
<td>T</td>
<td>-</td>
<td>A</td>
<td>This is ok; all accumulating variables are calculated before all transitory variables.</td>
<td>ok</td>
</tr>
<tr>
<td>$Y_t = f(X_{t-1}, Y_{t-1})$</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>Y must be calculated before X is calculated.</td>
<td>$Y < X$</td>
</tr>
</tbody>
</table>
A simulation step

- Process user input
 - Recalculate transitory variables
- Advance simulation time
- Calculate accumulating variables
- Calculate transitory variables
- Present results to user

- How to prevent user from changing parameters during a simulation step?
UI-model interaction

- Model output can be accessed through output ports
- Model parameters can be set/ altered through interface ports
 - Cache parameter value
 - Update real parameter with cached value before we take a simulation step

- Model tells UI when variables have been computed