Food Security in SSA and Biofuels: Quantitative Analyses

M. Obersteiner, Hannes Boettcher, Petr Havlík, Uwe A. Schneider, Sylvain Leduc, C. Lull, Steffen Fritz, I. Huck, G. Kindermann, Florian Kraxner, E. Rametsteiner, T. Sauer, E. Schmid and R. Skalský and many more

Humboldt University, April 6 – 9th 2008
What LUC for Food security and Biofuels?
Intensive SFM

Optimal Rotation Period
4 Years

Courtesy: StoraEnso
Extensive SFM

Ordinary retention
Corridor habitat
Restoration area
Key habitat
Matrix of key options

Overview key options

<table>
<thead>
<tr>
<th>Type of activity</th>
<th>Activity</th>
<th>Practice</th>
<th>specific management (change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUC</td>
<td>Deforestation</td>
<td>Avoid deforestation</td>
<td>Forest conservation of primary forest</td>
</tr>
<tr>
<td>Vegetation C management</td>
<td>Cropland management</td>
<td>Nutrient management</td>
<td>Precision farming</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Sugar cane</td>
<td>Biofuel, first generation</td>
<td>Biodiesel</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Corn</td>
<td>Biofuel, first generation</td>
<td>Bioethanol…</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Rapeseed</td>
<td>Biofuel, second generation</td>
<td>BM gasification/syngas</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Agriculture (generic)</td>
<td>Combustion</td>
<td>Heat</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Agriculture (generic)</td>
<td>Combustion</td>
<td>Electricity</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Poplar, pine, willow energy plantation</td>
<td>Biofuel, second generation</td>
<td>BM gasification/syngas</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Fibre products</td>
<td>Wood products</td>
<td>Increase forest product recycling</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Fibre products</td>
<td>Wood products</td>
<td>Increase forest product use</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Chemical products</td>
<td>Chemicals</td>
<td>Increase product chain efficiency</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Chemical products</td>
<td>Chemicals</td>
<td>Increase biomaterial use</td>
</tr>
<tr>
<td>……</td>
<td>………</td>
<td>………</td>
<td>………</td>
</tr>
</tbody>
</table>

Mitigation option

<table>
<thead>
<tr>
<th>Type of activity</th>
<th>Activity</th>
<th>Practice</th>
<th>specific management (change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUC</td>
<td>Deforestation</td>
<td>Avoid deforestation</td>
<td>Forest conservation of primary forest</td>
</tr>
<tr>
<td>Vegetation C management</td>
<td>Cropland management</td>
<td>Nutrient management</td>
<td>Precision farming</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Sugar cane</td>
<td>Biofuel, first generation</td>
<td>Biodiesel</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Corn</td>
<td>Biofuel, first generation</td>
<td>Bioethanol…</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Rapeseed</td>
<td>Biofuel, second generation</td>
<td>BM gasification/syngas</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Agriculture (generic)</td>
<td>Combustion</td>
<td>Heat</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Agriculture (generic)</td>
<td>Combustion</td>
<td>Electricity</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>Poplar, pine, willow energy plantation</td>
<td>Biofuel, second generation</td>
<td>BM gasification/syngas</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Fibre products</td>
<td>Wood products</td>
<td>Increase forest product recycling</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Fibre products</td>
<td>Wood products</td>
<td>Increase forest product use</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Chemical products</td>
<td>Chemicals</td>
<td>Increase product chain efficiency</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Chemical products</td>
<td>Chemicals</td>
<td>Increase biomaterial use</td>
</tr>
<tr>
<td>……</td>
<td>………</td>
<td>………</td>
<td>………</td>
</tr>
</tbody>
</table>
Matrix of Key Options

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Timing of Impact</th>
<th>Timing of Costs</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequestration</td>
<td>Delayed</td>
<td>Immediate</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Conservation</td>
<td>Immediate</td>
<td>Immediate</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reduction</td>
<td>Immediate</td>
<td>Immediate</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

Mitigation Effect [+, 0 or -]
Matrix of Key Options

The matrix below outlines various land-use, land-use conflict, deforestation, greenhouse gas (GHG), and biodiversity options, along with their sustainability implications and socio-economic standards. Each cell represents the sustainability criteria applicable for each option:

1. **Land-use, land availability and land-use conflicts**
2. **Deforestation**
3. **GHG balance**
4. **Loss of biodiversity**
5. **Water concerns**
6. **Soil degradation**
7. **Other environmental concerns**
8. **Socio-economic standards**

Sustainability Implications

<table>
<thead>
<tr>
<th>Option</th>
<th>Theme 1</th>
<th>Theme 2</th>
<th>Theme 3</th>
<th>Theme 4</th>
<th>Theme 5</th>
<th>Theme 6</th>
<th>Theme 7</th>
<th>Theme 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Policy and Socio-economic Drivers

- Ag-Trade and AgPolicies
- Avoided Deforestation Policy
- Financial Markets
- GDP and Pop as demand drivers
- Forest sector and biorefinery industry
-
IIASA modeling framework

G4M: Geogr. explicit forest biomass growth, Afforestation, Deforestation, harvest, supply curves

EPIC Model: Agriculture, crop production, environmental factors, biogeochemistry

Bio-Tech Model: Product chains of bioenergy and biomaterials, GHG balance of options

BEWHERE Model: Optimal location of plants according to supply and demand, competition between biomass production types

GLOBIOM Model: Trade and competition between regions, competition between sectors

FORMICA Model: Regional forest management, GHG budget at forestry sector level, case studies
2 Factor Analysis
Number of undernourished people in SSA & Climate Change Crop Impacts
Derived Hotspots for Hunger

Hotspots of food insecurity projected for the year 2100
- Orange: Hotspot
- Red: Severe Hotspot
- Maroon: Very Severe Hotspot
Integrated Competition over Land

LAND - fixed production factor

Competition: Biofuels x Food x Forests

- Biofuels expansion
- Food security
- Deforestation

→ Comprehensive modeling frameworks required
Model presentation

Biomass
3 land based sectors:

- **Forestry:** traditional forests for sawnwood, and pulp and paper production
- **Agriculture:** major agricultural crops
- **Bioenergy:** conventional crops and dedicated forest plantations

Optimization Model (FASOM structure)
Maximization of the Social Welfare (PS + CS)

Partial equilibrium model: endogenous prices
Numerical analysis: Scenarios

2030 estimated FOOD and WOOD demand

+

Substitution of 10% of transport oil consumption

according to IIASA A2r baseline scenario 2030 by BIOFUELS

Variants

a) ETHAHOL (sugar cane + corn)

b) METHANOL (industrial plantations)
Endogenous food demand

Daily Energy Intake per Head (in kcal): Ethanol

- North America
- Western Europe
- Pacific OECD
- Central Eastern Europe
- Former Soviet Union
- Planned Asia China
- South Asia
- Other Pacific Asia
- Middle East North Africa
- Latin America Carib
- Sub-Saharan Africa
Endogenous food demand

Malnutrition

Prevalence of Malnutrition in Sub-Saharan Africa (%)
Deforestation Area

CO2 based deforestation tax

![Graph showing the relationship between deforestation tax (USD/tCO2) and deforested area (in 1000 000 ha). The graph includes two lines: one for Ethanol and one for Methanol.]
Emissions from Deforestation

CO2 based deforestation tax

Greenhouse Gas Emissions from Deforestation (in MtCO2)
Total Land-Use GHG budget

CO2 based deforestation tax

Annual Greenhouse Gas Emissions (in MtCO2)

Deforestation tax (USD/tCO2)

- Ethanol
- Methanol
Deforestation vs. Malnutrition

CO2 based deforestation tax

Prevalence of Malnutrition in Sub-Saharan Africa (%)

Deforestation tax (USD/tCO2)

Ethanol Methanol

IIASA
Conclusions

- Partial Analysis only Partially Useful
- Biofuels in conflict with eradication of malnutrition.
- Ambiguous effects on GHG emissions from biofuels because of LUC.
- Avoided deforestation policy may have negative effects on food security.
- PRELIMINARY! – numerical results to be checked with the full model.
- NEXT: Income effects – to be analysed next (C. Llull)
 - avoided deforestation policies *eq.* development policies ??