Evaluating strategies for diffuse pollution under climate-induced landuse change
A case study of the River Tamar, UK

Conor Linstead¹, Edward Maltby¹, Andrew Wade² and Philip Jones²

¹University of Liverpool
²University of Reading
Euro-limpacs Decision Support System

- GIS tool to evaluate catchment management strategies in the context of climate change
- Flexible structure can be applied to different problem types (e.g. diffuse pollution, flooding, acidification)
- Uses Multi-criteria Analysis (MCA) to assess which strategy is preferable
Multi-criteria Analysis

- Identify key environmental, social and economic variables influenced by management strategies
- Determining the optimum strategy needs to consider the trade-offs between variables (e.g. cost and water quality)
- Partly a scientific assessment and partly a subjective stakeholder view (e.g. how important is fishing compared to potable water?)
Multi-criteria Analysis

- Normalise the variables by transforming from metric (e.g. ha, mg/l, diversity score) to scale from 0 to 1
- Number of methods for doing this
 - Policy thresholds
 - Ecosystem limits
- Weight the values and sum to give overall score for the condition of the catchment
Application to the Tamar, UK

• Problem with diffuse pollution
• Measures to address diffuse pollution:
 – reduction in fertiliser applications and improved fertiliser practices
 – reduction in stocking density
 – shift back from arable to pasture
 – restoration of wetlands
• What will happen under climate change?
Climate Scenarios and Management Strategies

• Management Strategies
 – Business as usual
 – Policy Targets
 – Deep Green

• Climate scenarios
 – IPCC scenarios A2 and B2
 – Years 2050 and 2085
Variables

- Nitrate concentration at the outlet of each of the major sub-catchments of the Tamar
 - yearly average
 - April to September (low flow, ecologically sensitive period)
 - October to March – higher flows
- Costs of implementing the measures
- Biodiversity indicators
 - area of non-farmed land
 - wetland area
- Hydrology
 - mean flow
 - high flow
 - low flow
Models – quantify the variables

• Climate and Landuse Allocation Model (CLUAM)
 – Predicts changes in agricultural landuse distribution, incorporating climate change
 – Based on global economic models, crop requirements

• INCA-N
 – Models nitrate concentration using climate, landuse and management
Climate data → Landuse Stock levels → Scenario landuse and stock levels → Nitrate, Flow, Costs, Non-farmed area

CLUAM

INCA

Historical data → Wetland area
<table>
<thead>
<tr>
<th></th>
<th>Upper Lake</th>
<th>Upper Lake</th>
<th>Lower Lake</th>
<th>Tamarstone</th>
<th>Crawford</th>
<th>Deer</th>
<th>Boyton</th>
<th>Nether</th>
<th>Poison</th>
<th>Greyston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean flow (m³/s)</td>
<td>0.10</td>
<td>0.14</td>
<td>0.19</td>
<td>0.53</td>
<td>0.88</td>
<td>1.13</td>
<td>2.31</td>
<td>4.06</td>
<td>5.36</td>
<td>8.10</td>
</tr>
<tr>
<td>Q5</td>
<td>0.52</td>
<td>0.75</td>
<td>0.96</td>
<td>2.77</td>
<td>4.56</td>
<td>5.91</td>
<td>11.75</td>
<td>20.52</td>
<td>26.59</td>
<td>39.35</td>
</tr>
<tr>
<td>Q95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Mean N (mg/l)</td>
<td>2.27</td>
<td>0.57</td>
<td>0.44</td>
<td>0.77</td>
<td>0.81</td>
<td>0.83</td>
<td>1.02</td>
<td>1.42</td>
<td>3.32</td>
<td>1.65</td>
</tr>
<tr>
<td>Apr-Sept N</td>
<td>2.23</td>
<td>0.49</td>
<td>0.33</td>
<td>0.75</td>
<td>0.79</td>
<td>0.83</td>
<td>1.10</td>
<td>1.54</td>
<td>2.67</td>
<td>1.48</td>
</tr>
<tr>
<td>Oct-Mar N</td>
<td>2.31</td>
<td>0.66</td>
<td>0.54</td>
<td>0.79</td>
<td>0.82</td>
<td>0.84</td>
<td>0.95</td>
<td>1.30</td>
<td>3.97</td>
<td>1.81</td>
</tr>
<tr>
<td>Wetland area (%)</td>
<td>11.51</td>
<td>1.16</td>
<td>3.17</td>
<td>17.51</td>
<td>17.81</td>
<td>16.08</td>
<td>13.51</td>
<td>13.69</td>
<td>14.52</td>
<td>11.74</td>
</tr>
<tr>
<td>Q5</td>
<td>52.30</td>
<td>54.00</td>
<td>54.30</td>
<td>50.80</td>
<td>53.40</td>
<td>52.00</td>
<td>57.30</td>
<td>49.90</td>
<td>57.70</td>
<td>57.20</td>
</tr>
<tr>
<td>Q95</td>
<td>43.68</td>
<td>43.43</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Costs (£/ha)</td>
<td>32.00</td>
<td>34.00</td>
<td>34.00</td>
<td>36.00</td>
<td>37.00</td>
<td>37.00</td>
<td>35.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
<tr>
<td>Non-farmed (%)</td>
<td>43.33</td>
<td>43.33</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Costs (£/ha)</td>
<td>32.00</td>
<td>34.00</td>
<td>34.00</td>
<td>36.00</td>
<td>37.00</td>
<td>37.00</td>
<td>35.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
<tr>
<td>Q5</td>
<td>43.68</td>
<td>43.43</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Q95</td>
<td>43.68</td>
<td>43.43</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Costs (£/ha)</td>
<td>32.00</td>
<td>34.00</td>
<td>34.00</td>
<td>36.00</td>
<td>37.00</td>
<td>37.00</td>
<td>35.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
<tr>
<td>Q5</td>
<td>43.68</td>
<td>43.43</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Q95</td>
<td>43.68</td>
<td>43.43</td>
<td>43.33</td>
<td>44.30</td>
<td>43.59</td>
<td>43.94</td>
<td>38.91</td>
<td>41.98</td>
<td>34.64</td>
<td>32.20</td>
</tr>
<tr>
<td>Costs (£/ha)</td>
<td>32.00</td>
<td>34.00</td>
<td>34.00</td>
<td>36.00</td>
<td>37.00</td>
<td>37.00</td>
<td>35.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
</tbody>
</table>

0.34 0.22 0.67 0.76 0.82 0.45 0.54 0.32 0.63 0.78 0.57
Total A2 2085:

- Current
- Business as usual
- Policy Targets
- Deep Green
Conclusions

• Flexible tool for evaluating catchment management strategies and climate interactions

• Important to integrate environmental, social and economic variables in an evaluation