Impact of ecosystem changes on land use functions in Jinghe Watershed of Western China

Yunjie Wei¹, Lin Zhen¹, Hannes Köenig²

¹ IGSNRR, CAS; ² ZALF

March 17th, 2010
Outline

• Land Use Function
• Study Area
• Methods
• Results
• Conclusion & Discussion
Impact of ecosystem changes on land use functions in Jinghe Watershed of western China

Land Use Function

- Agriculture
- Forestry
- Nature Conservation
- Transport Infrastructure
- Energy
- Tourism

Multifunctional land use

Social

- Provision of work
- Human health & recreation
- Cultural & aesthetic values

Economic

- Industry & services
- Land based production
- Infrastructure
- Abiotic resources
- Biotic resources
- Ecosystem processes

Environment

- Abiotic resources
- Biotic resources
- Ecosystem processes

Yunjie Wei, Lin Zhen, Hannes Köenig
Research Questions

• Which are the main Land Use Functions and its indicator in study area?
• How did they change on temporal and spatial?
• Which kind of methods is the best for impact assessment of ecosystem changes involved stakeholders and expert knowledge?
Study Area

- 32 counties
- N34°14’ ~ 38°10’
- E105°49’ ~ 108°58’

- Lack of water

- Main land use
 - Arable land
 - Forest land
 - Grassland
Methods - FoPIA

Pillar Land Use Functions First

<table>
<thead>
<tr>
<th>Social</th>
<th>Economic</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUF1 Provision of work</td>
<td>LUF4 Residential and non-land industry and services</td>
<td>LUF7 Provision of abiotic resources</td>
</tr>
<tr>
<td>6.8</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>LUF2 Quality of life</td>
<td>LUF5 Land based production</td>
<td>LUF8 Provision of biotic resources</td>
</tr>
<tr>
<td>7.5</td>
<td>8.3</td>
<td>7.6</td>
</tr>
<tr>
<td>LUF3 Food security</td>
<td>LUF6 Infrastructure</td>
<td>LUF9 Maintenance of ecosystem processes</td>
</tr>
<tr>
<td>7.4</td>
<td>5.5</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Scoring

- **Social**
 - LUF1 Provision of work: 6.8
 - LUF2 Quality of life: 7.5
 - LUF3 Food security: 7.4
- **Economic**
 - LUF4 Residential and non-land industry and services: 6.3
 - LUF5 Land based production: 8.3
 - LUF6 Infrastructure: 5.5
- **Environmental**
 - LUF7 Provision of abiotic resources: 6.5
 - LUF8 Provision of biotic resources: 7.6
 - LUF9 Maintenance of ecosystem processes: 7.4
Methods-PRA

- Loacal ecosystem services
 - Products
 - Services
 - Changes

- Questionnaire
 - Consumption
 - Human well-being
Methods: Pro-Vision (ZALF)

- Each LUF is linked to the individual sustainability-contribution of a single land use type. Pro-Vision uses Expression to evaluate the land use function and the function change.

\[
LUF = \sum \left(\frac{N_i}{N} \cdot W_i \right)
\]

- Where, \(N_i\) is count of grid (land use area), \(N\) is sum of count (total regional land use area), and \(W_i\) is weight value of the corresponding land use type.
Methods: Pro-Vision (ZALF)

<table>
<thead>
<tr>
<th>Land use type</th>
<th>LUF1</th>
<th>LUF2</th>
<th>…</th>
<th>LUF9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arable land</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest land</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-up area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unused land</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land use type</th>
<th>Area percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arable land</td>
<td></td>
</tr>
<tr>
<td>Forest land</td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
</tr>
<tr>
<td>Water area</td>
<td></td>
</tr>
<tr>
<td>Built-up area</td>
<td></td>
</tr>
<tr>
<td>Unused land</td>
<td></td>
</tr>
</tbody>
</table>

Yunjie Wei, Lin Zhen, Hannes Köenig
Methods: Pro-Vision (ZALF)

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>LUF1</th>
<th>LUF2</th>
<th>...</th>
<th>LUF9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-up area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unused land</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LUFs Weight Value in Jinghe Watershed (0-100)

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Arable land</th>
<th>Forestland</th>
<th>Grassland</th>
<th>Water area</th>
<th>Built-up area</th>
<th>Unused land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social LUFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUF1 Provision of work</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>LUF2 Quality of life (income)</td>
<td>60</td>
<td>40</td>
<td>50</td>
<td>30</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>LUF3 Food security</td>
<td>100</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Economic LUFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUF4 Residential and non-land industry and services</td>
<td>30</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>LUF5 Land based production</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUF6 Infrastructure</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Ecological LUFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUF7 Provision of abiotic resources (clean water/ air)</td>
<td>60</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>LUF8 Provision of biotic resources (biodiversity)</td>
<td>70</td>
<td>100</td>
<td>80</td>
<td>70</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>LUF9 Maintenance of ecosystem processes</td>
<td>80</td>
<td>100</td>
<td>90</td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Spatial analysis

Raster Calculator

Land use map × LUFs weight value → Land use function map

Yunjie Wei, Lin Zhen, Hannes Köenig
Results

Environmental LUFs in 2005 in Jinghe

LUFs in 2005 in Jinghe

Yunjie Wei, Lin Zhen, Hannes Köenig
Influencing Indicators

<table>
<thead>
<tr>
<th>SOCIAL</th>
<th>ECONOMICAL</th>
<th>ENVIRONMENTAL</th>
</tr>
</thead>
</table>
| **Water:**
 - quality
 - quantity | **Provision of work and non-industrial activities** | **Provision of abiotic resources** |
| **Air:**
 - Pollution
 - GHG emissions | | |
| **Quality of life** | | **Provision of biotic resources** |
| **Biodiversity:**
 - forest coverage
 - the number of species | | |
| **Soil:**
 - Sealing
 - Wind & Water erosion
 - pollution
 - organic C | | **Maintenance of ecosystem processes.** |

Yunjie Wei, Lin Zhen, Hannes Köenig
Conclusions

- Combined FoPIA and spatial land use function analysis in Pro-Vision
- It identifies 9 LUFs and indicators in Jinghe Watershed
- Try to LUFs spatial analysis
- Methods
Discussion

• Simulate LUFs in the future based on policy
• Optimise future land use
• Increasing local people’s income from land
Acknowledgement

• SENSOR Project of EU FP6
• Special Programme of Ministry of Technology and Sciences, P. R. China

• Our partners in ZALF
• All stakeholders
Impact of ecosystem changes on land use functions in Jinghe Watershed of western China

Yunjie Wei, Lin Zhen, Hannes Köenig
Thanks very much for your attention!

Yunjie Wei, Lin Zhen, Hannes Köenig